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Abstract

Malicious code detection is a crucial component of any de&emechanism. In this paper, we present a unique
viewpoint on malicious code detection. We regard malicioode detection as an obfuscation-deobfuscation game
between malicious code writers and researchers workingaicious code detection. Malicious code writers attempt
to obfuscate the malicious code to subvert the malicioug c®lectors, such as anti-virus software. We tested the
resilience of three commercial virus scanners against obfiescation attacks. The results were surprising: thesthre
commercial virus scanners could be subverted by very siotglgscation transformations! We present an architecture
for detecting malicious patterns in executables that iieasto common obfuscation transformations. Experiraént
results demonstrate the efficacy of our prototype tool, Sfd-fatic analyzer br executables).

1 Introduction

In the interconnected world of computers, malicious codelfeome an omnipresent and dangerous threat. Malicious
code can infiltrate hosts using a variety of methods suchtaskatagainst known software flaws, hidden functionality
in regular programs, and social engineering. Given thestatiag effect malicious code has on our cyber infrastruc-
ture, identifying malicious programs is an important g@ttecting the presence of malicious code on a given host is
a crucial component of any defense mechanism.

Malicious code is usually classified [29] according to itsgmgation method and goal into the following categories:

e virusesare programs that self-replicate within a host by attachirgnselves to programs and/or documents that
become carriers of the malicious code;

e wormsself-replicate across a network;

e trojan horseamasquerade as useful programs, but contain malicious oaattaick the system or leak data;

e back doorsopen the system to external entities by subverting the leealirity policies to allow remote access and
control over a network;

e spywares a useful software package that also transmits privatedata to an external entity.

Combining two or more of these malicious code categoriedeaah to powerful attack tools. For example, a worm
can contain a payload that installs a back door to allow remactess. When the worm replicates to a new system
(via email or other means), the back door is installed ongisttem, thus providing an attacker with a quick and easy
way to gain access to a large set of hosts. Staniébrdl. have demonstrated that worms can propagate extremely
quickly through a network, and thus potentially cripple #dire cyber infrastructure [40]. In a recent outbreak,
the Sapphire/Slammer worm reached the peak infection masdout 10 minutes since launch, doubling every 8.5
seconds [30]. Once the back-door tool gains a large indtaléese, the attacker can use the compromised hosts to
launch a coordinated attack, such as a distributed defisdnwice (DDoS) attack [5].

In this paper, we develop a methodology for detecting malisipatterns in executables. Although our method is
general, we have initially focused our attention on virusesomputer virus replicates itself by inserting a copy of
its code (theviral code) into a host program. When a user executes the infectedgargdhe virus copy runs, infects
more programs, and then the original program continuesdowg®. To the casual user, there is no perceived difference
between the clean and the infected copies of a program batilitus activates its malicious payload.

The classic virus-detection techniques look for the pres@fi a virus-specific sequence of instructions (calletias
signaturg inside the program: if the signature is found, it is hightgipable that the program is infected. For example,



the Chernobyl/CIH virus is detected by checking for the ldexamal sequence [44]:

E800 0000 005B 8D4B 4251 5050
OF01 4C24 FE5B 83C3 1CFA 8B2B

This corresponds to the following IA-32 instruction seqeerwhich constitutes part of the virus body:

E8 00000000 call Oh

5B pop ebx

8D 4B 42 | ea ecx, [ebx + 42h]
51 push ecx

50 push eax

50 push eax

OF01 4C 24 FE sidt [esp - 02h]
5B pop ebx

83 C3 1C add ebx, 1Ch

FA cli

8B 2B nmov ebp, [ebx]

This classic detection approach is effective when the wage does not change significantly over time. Detection
is also easier when viruses originate from the same sourd® @ath only minor modifications and updates. Thus, a
virus signature can be common to several virus variantsexample, Chernobyl/CIH versions 1.2, 1.3, and 1.4 differ
mainly in the trigger date on which the malicious code bec®awtive and can be effectively detected by scanning for
a single signature, namely the one shown above.

The virus writers and the antivirus software developergagaged in anbfuscation-deobfuscatigame. Virus writ-

ers try to obfuscate the “vanilla” virus so that signaturesdiby the antivirus software cannot detect these “morphed”

viruses. Therefore, to detect an obfuscated virus, thes\daoanners first must undo the obfuscation transformations
used by the virus writers. In this game, virus writers araigbétors and researchers working on malicious code detec-
tion are deobfuscators. A method to detect malicious codeldtbe resistant to common obfuscation transformations.

This paper introduces such a method. The main contributibtiss paper include:

The obfuscation-deobfuscation game and attacks on commead virus scanners

We view malicious code detection as an obfuscation-dechticsh game between the virus writers and the researchers
working to detect malicious code. Background on some commbdunscation techniques used by virus writers is given
in Section 3. We also have developed an obfuscator for eablag. Surprisingly, the three commercial virus scanners
we considered could be easily thwarted by simple obfuse#étamsformations (Section 4). For example, in some cases
the Norton antivirus scanner could not even detect insgstadnop instructions.

A general architecture for detecting malicious patterns inexecutables

We introduce a general architecture for detecting malipatterns in executables. An overview of the architecture
and its novel features is given in Section 5. External praeig and uninterpreted symbols are two important elements
in our architecture. External predicates are used to sumenegsults of various static analyses, such as points-to
and live-range analysis. We allow these external predicamidoe referred in the abstraction patterns that describe
the malicious code. Moreover, we allow uninterpreted syislo patterns, which makes the method resistant to
renaming, a common obfuscation transformation. Two keypmments of our architecturéhe program annotator
andthe malicious code detectaare described in Sections 6 and 7 respectively.

Prototype for x86 executables

We have implemented a prototype for detecting maliciousepas in x86 executables. The tool is calledtatic
analyzer br executable®r SAFE We have successfully tried SAFE on multiple viruses; fawvitly we report on our
experience with four specific viruses. Experimental res(Section 8) demonstrate the efficacy of SAFE. There are
several interesting directions we intend to pursue asduttark, which are summarized in Section 9.

Extensibility of analysis

SAFE depends heavily on static analysis techniques. Adt rdge precision of the tool directly depends on the static
analysis techniques that are integrated into it. In othed&/&AFE is as good as the static analysis techniques it is
built upon For example, if SAFE uses the result of points-to analysigill be able to track values across memory
references. In the absence of a points-to analyzer, SAFEsthk conservative assumption that a memory reference
can access any memory location (i.e. everything pointséoyghing). We have designed SAFE so that various static
analysis techniques can be readily integrated into it. @¢gemple static analysis techniques are already implégaen

in SAFE.



2 Related Work

2.1 Theoretical Discussion

The theoretical limits of malicious code detection (speaify of virus detection) have been the focus of many re-
searchers. Cohen [10] and Chess-White [9] showed that iergethe problem of virus detection is undecidable.
Similarly, several important static analysis problemstardecidable or computationally hard [27, 34].

However, the problem considered in this paper is slightifednt than the one considered by Cohen [10] and Chess-
White [9]. Assume that we are given a vanilla vifiswhich contains a malicious sequence of instructionNext

we are given an obfuscated versiéi{V') of the virus. The problem is to find whether there exists a srge of
instructionss’ in O(V') which is “semantically equivalent” te. A recent result by Vadhaet. al. [3] proves that in
general program obfuscation is impossible. This leads bslieve that a computationally bounded adversary will not
be able to obfuscate a virus to completely hide its malictoelsavior. We will further explore these theoretical issues
in the future.

2.2 Other Detection Techniques

Our work is closely related to previous results on statidysis techniques for verifying security properties of soft
ware [1, 4, 8, 7, 24, 28]. In a larger context, our work is similo existing research on software verification [2,
13]. However, there are several important differencesstFiuiewing malicious code detection as an obfuscation-
deobfuscation game is unique. The obfuscation-deobfiascaewpoint lead us to explore obfuscation attacks upon
commercial virus scanners. Second, to our knowledge, &tieg work on static analysis techniques for verifying
security properties analyze source code. On the other lamdnalysis technique works on executables. In certain
contexts, such as virus detection, source code is not dlailginally, we believe that using uninterpreted varialie

the specification of the malicious code is unique (Secti@.6.

We plan to enhance our framework by using the ideas fromiegistork on type systems for assembly code. We
are currently investigating Morrise#t. al's Typed Assembly Languaf@l, 32]. We apply a simple type system
(Section 6) to the binaries we analyze by manually inseittiegtype annotations. We know of no compiler that can
produce Typed Assembly Language, and thus we plan to suppt@nnal type annotations to enhance the power of
our static analysis.

Dynamic monitoring can also be used for malicious code dietec Cohen [10] and Chess-White [9] propose a
virus detection model that executes code in a sandbox. Anapproach rewrites the binary to introduce checks
driven by an enforceable security policy [17] (known as ithiene reference monitoor the IRM approach). We
believe static analysis can be used to improve the efficieficlynamic analysis techniques, e.g., static analysis can
remove redundant checks in the IRM framework. We construchwodels for executables similar to the work done
in specification-based monitoring [20, 43], and apply ouedgon algorithm in a context-insensitive fashion. Other
research used context-sensitive analysis by employing-gas/n systems (PDSs). Analyses described in [7, 24]
use the model checking algorithms for pushdown systemstfil8¢rify security properties of programs. The data
structures used in interprocedural slicing [23], integaural DFA [38], and Boolean programs [2] are hierarchycal
structured graphs and can be translated to pushdown systems

2.3 Other Obfuscators

While deciding on the initial obfuscation techniques todfson, we were influenced by several existing tobsstfall

(by zOmbi@ is a library for binary obfuscation, specifically writtemttilend malicious code into a host program [46]. It
can encrypt, morph, and blend the virus code into the hogfrar. Our binary obfuscator is very similar to Mistfall.
Unfortunately, we could not successfully morph binaridagidistfall, so we could not perform a direct comparison
between our obfuscator and Mistfalburneye(by TESQ is a Linux binary encapsulation tool. burneye encrypts a
binary (possibly multiple times), and packages it into a rm@mary with an extraction tool [42]. In this paper, we
have not considered encryption based obfuscation tecésigln the future, we will incorporate encryption based
obfuscation techniques into our tool, by incorporatingxieading existing libraries.



3 Background on Obfuscating Viruses

To detect obfuscated viruses, antivirus software haverbeamore complex. This section discusses some common
obfuscation transformations used by virus writers and hotiviaus software have historically dealt with obfuscated

viruses.

A polymorphic virususes multiple techniques to prevent signature matchingt, Ehe virus code is encrypted, and
only a small in-clear routine is designed to decrypt the doefere running the virus. When the polymorphic virus
replicates itself by infecting another program, it encsyjbte virus body with a newly-generated key, and it changes
the decryption routine by generating new code for it. To sbé&ie the decryption routine, several transformations
are applied to it. These includetop-insertion, code transposition (changing the order ofriridtons and placing
jump instructions to maintain the original semantics), aggister reassignment (permuting the register allocation
These transformations effectively change the virus sigeatFigure 1), inhibiting effective signature scanningay

antivirus tool.

Original code Obfuscated code
E8 00000000 call 0Oh E8 00000000 call Oh
5B pop ebx 5B pop ebx
8D 4B 42 | ea ecx, [ebx + 42h] 8D 4B 42 | ea ecx, [ebx + 45h]
51 push ecx 90 nop
50 push eax 51 push ecx
50 push eax 50 push eax
OF01 4C 24 FE sidt [esp - 02h] 50 push eax
5B pop ebx 90 nop
83 C3 1C add ebx, 1Ch OF01 4C 24 FE sidt [esp - 02h]
FA cli 5B pop ebx
8B 2B nmov ebp, [ebx] 83 C3 1C add ebx, 1Ch
90 nop
FA cli
8B 2B nmov ebp, [ebx]
Signature New signature

E800 0000 005B 8D4B 4251 5050
OF01 4C24 FE5B 83C3 1CFA 8B2B

E800 0000 005B 8D4B 4290 5150
5090 OF01 4C24 FE5B 83C3 1C90
FASB 2B

Figure 1: Original code and obfuscated code from Chern@ibill/ and their corresponding signatures. Newly added
instructions are highlighted.

The obfuscated code in Figure 1 will behave in the same masiaefore since theop instruction has no effect other
than incrementing the program courttédowever the signature has changed. Analysis can deteplesobfuscations,

like nop-insertion, by using regular expressions instead of fixgdatures. To catchop insertions, the signature
should allow for any number afops at instruction boundaries (Figure 2). In fact, most modativirus software use
regular expressions for virus signatures.

E800 0000
51(90)*  50(90)*
5B(90)*  83C3

00(90)* 5B(90)* 8D4B
50(90)*  OF01 4c24
1C(90)*  FA(90)*  8B2B

42(90) *
FE( 90) *

Figure 2: Extended signature to catohp-insertion.

Antivirus software deals with polymorphic viruses by penfiing heuristic analyses of the code (such as checking
only certain program locations for virus code, as most palgphic viruses attach themselves only at the beginning
or end of the executable binary [36]), and even emulatingptbgram in a sandbox to catch the virus in action [35].
The emulation technique is effective because at some paiimgithe execution of the infected program, the virus
body appears decrypted in main memory, ready for executi@ngetection comes down to frequently scanning the
in-memory image of the program for virus signatures whike pinogram runs.

Metamorphic viruseattempt to evade heuristic detection techniques by using cammplex obfuscations. When they

INote that the subroutine address computation had to be egdtatake into account the newops. This is a trivial computation and can be
implemented by adding the number of insentexps to the initial offset hard-coded in the virus-morphing €od



replicate, these viruses change their code in a variety gy&uch as code transposition, substitution of equivalent
instruction sequences, and register reassignment [41F48&hermore, they can “weave” the virus code into the host
program, making detection by traditional heuristics alhimpossible since the virus code is mixed with program code
and the virus entry point is no longer at the beginning of ttegpam (these are designatedeasry point obscuring
(EPO) viruses [25]). B

As virus writers employ more complex obfuscation techngjineuristic virus-detection techniques are bound to fail.
Thereforethere is need to perform a deeper analysis of malicious cagedupon more sophisticated static-analysis
techniqueslin other words, inspection of the code to detect malicicatsgons should use structures that are closer to
the semantics of the code, as purely syntactic techniquels,as regular expression matching, are no longer adequate.

3.1 The Suite of Viruses

We have analyzed multiple viruses using our tool, and diséus of them in this paper. Descriptions of these viruses
are given below.

3.1.1 Detailed Description of the Viruses

Chernobyl (CIH)

According to the Symantec Antivirus Reseach Center (SARGErnobyl/ClHis a virus that infects 32-bit Windows
95/98/NT executable files [39]. When a user executes antidegrogram under Windows 95/98/ME, the virus
becomes resident in memory. Once the virus is resident, @fi¢tis other files when they are accessed. Infected files
may have the same size as the original files because of Cllitjsi@mode of infection: the virus searches for empty,
unused spaces in the fileNext it breaks itself up into smaller pieces and insertgdtde into these unused spaces.
Chernobyl has two different payloads: the first one oveesrihe hard disk with random data, starting at the beginning
of the disk (sector 0) using an infinite loop. The second paylkvies to cause permanent damage to the computer by
corrupting the Flash BIOS.

zombie-6.b

ThezOmbie-6.lvirus includes an interesting feature — the polymorphideaides every piece of the virus, and the
virus code is added to the infected file as a chain of difféyesired routines, making standard signature detection
techniques almost useless.

fOsfOr0

ThefOsfOrOvirus uses a polymorphic engine combined with an EPO tecieniq hide its entry point. According to
Kaspersky Labs [26], when an infected file is run and the wiade gains control, it searches for Portable Executable
files in the system directories and infects them. While itifeg the virus encrypts itself with a polymorphic loop
and writes a result to the end of the file. To gain control whenibfected file is run, the virus does not modify the
program’s start address, but instead writeg ey (vi r us_ent r y)” instruction into the middle of the file.

Hare

Finally, theHare virus infects the bootloader sectors of floppy disks and Wdaikeés, as well as executable programs.
When the payload is triggered, the virus overwrites randeotoss on the hard disk, making the data inaccessible.
The virus spreads by polymorphically changing its decryptoutine and encrypting its main body.

The Hare and Chernobyl/CIH viruses are well known in thevamis community, with their presence in the wild
peaking in 1996 and 1998, respectively. In spite of this, v8ealered thaturrent commercial virus scanners could
not detect slightly obfuscated versions of these viruses.

4 Obfuscation Attacks on Commercial Virus Scanners

We tested three commercial virus scanners against sewemnahon obfuscation transformations. To test the resilience
of commercial virus scanners to common obfuscation transitions, we have developed an obfuscator for binaries.
Our obfuscator supports four common obfuscation transftions: dead-code insertion, code transposition, ragiste

reassignment, and instruction substitution. While theescgher generic obfuscation techniques [11, 12], those de-
scribed here seem to be preferred by malicious code wriiessibly because implementing them is easy and they add

2Most executable formats require that the various sectibttsecexecutable file start at certain aligned addressessfect the target platform’s
idiosyncrasies. The extra space between the end of onersectd the beginning of the next is usually padded with nulls.



little to the memory footprint.
4.1 Common Obfuscation Transformations
4.1.1 Dead-Code Insertion

Also known agrash insertion dead-code insertion adds code to a program without madjfiys behavior. Inserting a
sequence afiop instructions is the simplest example. More interestingiebhtions involve constructing challenging
code sequences that modify the program state, only to eetionmediately.

Some code sequences are designed to fool antivirus softharsolely rely on signature matching as their detection
mechanism. Other code sequences are complicated enougikeautomatic analysis very time-consuming, if not
impossible. For example, passing values through memangrahan through registers or the stack requires accurate
pointer analysis to recover values. The example shown iarEig should clarify this. The code marked by (*) can be
easily eliminated by automated analysis. On the other ithedsecond and third insertions, marked by (**), do cancel
out but the analysis is more complex. Our obfuscator supmi@ad-code insertion.

Original code Code obfuscated through Code obfuscateditiro
dead-code insertion code transposition
call 0Oh call Oh call Oh
pop ebx pop ebx pop ebx
| ea ecx, [ebx + 42h] | ea ecx, [ebx + 45h] jnp Step2
push ecx nop (*) St ep3: push eax
push eax nop (*) push eax
push eax push ecx sidt [esp - 02h]
sidt [esp - 02h] push eax jnp Step4
pop ebx inc eax (**) add ebx, 1Ch
add ebx, 1Ch push eax jmp Step6
cli dec [esp - 0h] (**) St ep2: | ea ecx, [ebx + 45h]
nmov ebp, [ebx] dec eax (**) push ecx
sidt [esp - 02h] jnp Step3
pop ebx St ep4: pop ebx
add ebx, 1Ch cli
cli jmp Step5
nmov ebp, [ebx] St ep5: nov ebp, [ebx]

Figure 3: Examples of obfuscation through dead-code iimseaind code transposition. Newly added instructions are
highlighted.

Not all dead-code sequence can be detected and eliminatéuisaoroblem reduces to program equivalence (ise.,
this code sequence equivalent to an empty progjamRich is undecidable. We believe that a great many common
dead-code sequences can be detected and eliminated wéfhtalsle performance. To quote the documentation of the
RPME virus permutation engine [47],

[T]rash [does not make the] program more complex [...] . HEJtdetecting algorithm will be written
such as | think, then there is no difference between NOP and ommplex trash.

Our detection tool, SAFE, identifies several kinds of suchddeode segments.
4.1.2 Code Transposition

Code transposition shuffles the instructions so that therandthe binary image is different from the execution order,
or from the order of instructions assumed in the signatued by the antivirus software. To achieve the first variation,
we randomly reorder the instructions and insert unconddtitoranches ojumpsto restore the original control-flow.
The second variation swaps instructions if they are notdeeendent, similar to compiler code generation, but with
the different goal of randomizing the instruction stream.

The two versions of this obfuscation technique differ initlttmplexity. The code transposition technique based
upon unconditional branches is relatively easy to impleméine second technique that interchanges independent
instructions is more complicated because the independ#nastructions must be ascertained. On the analysis side,
code transposition can complicate matters only for a hunhdost automatic analysis tools (including ours) use an
intermediate representation, such as the control flow gf@pis) or the program dependence graph (PDG) [23], that



is not sensitive to superfluous changes in control flow. Nia&¢ &an optimizer acts as a deobfuscator in this case by
finding the unnecessary unconditional branches and remdwem from the program code. Currently, our obfuscator
supports only code transposition based upon insertingnditonal branches.

4.1.3 Register Reassignment

The register reassignment transformation replaces usageeoregister with another in a specific live range. This
technique exchanges register names and has no other affgcbgram behavior. For example, if registdx is
dead throughout a given live range of the registax, it can replaceax in that live range. In certain cases, register
reassignment requires insertion of prologue and epilogule @round the live range to restore the state of various
registers. Our binary obfuscator supports this code toamsdtion.

The purpose of this transformation is to subvert the ants/software analyses that rely upon signature-matching.
There is no real obfuscatory value gained in this procesac@utually, the deobfuscation challenge is equally cormple
before or after the register reassignment.

4.1.4 Instruction Substitution

This obfuscation technique uses a dictionary of equivatesituction sequences to replace one instruction sequence
with another. Since this transformation relies upon humaowkedge of equivalent instructions, it poses the toughest
challenge for automatic detection of malicious code. Th&RAnstruction set is especially rich, and provides sdvera
ways of performing the same operation. Coupled with sewam@litecturally ambivalent features (e.g., a memory-
based stack that can be accessed both as a stack using e@dirsttuctions and as a memory area using standard
memory operations), the 1A-32 assembly language providggeaopportunity for instruction substitution.

Original code Obfuscated code

call Oh call Oh

pop ebx pop ebx

| ea ecx, [ebx + 42h] | ea ecx, [ebx + 42h]

push ecx sub esp, 03h

push eax

push eax

sidt [esp - 02h] sidt [esp - 02h]

pop ebx add [esp], 1Ch
nov ebx, [esp]

add ebx, 1Ch inc esp

cli cli

nmov ebp, [ebx] nov ebp, [ebx]

Figure 4: Example of obfuscation through instruction sittoson. Newly added instructions are highlighted.

To handle obfuscation based upon instruction substituaoranalysis tool must maintain a dictionary of equivalent
instruction sequences, similar to the dictionary used toegete them. This is not a comprehensive solution, but it
can cope with the common cases. In the case of IA-32, the @molohn be slightly simplified by using a simple
intermediate language that “unwinds” the complex openatmorresponding to each 1A-32 instruction. In some cases,
a theorem prover such as Simplify [16] or PVS [37] can also $exluo prove that two sequences of instructions are
equivalent.

4.2 Testing Commercial Antivirus Tools

We tested three commercial virus scanners using obfuseatsibns of the four viruses described earlier. The re-
sults were quite surprisingt combination ohop-insertion and code transposition was enough to create sufated
versions of the viruses that the commercial virus scanneutdenot detect Moreover, the Norton antivirus software
could not detect an obfuscated version of the Chernobybuiking justhop-insertions. SAFE was resistant to the
two obfuscation transformations. The results are summdriz Table 1. A indicates that the antivirus software
detected the virus. Al means that the software did not detect the virus. Noticeuthabfuscated versions of all four
viruses were detected by all the tools.



Norton® & McAfee® @ Command®
Antivirus | VirusScan  Antivirus SAFE

7.0 6.01 4.61.2

original O 0 0 0

Chernobyl ‘ ‘
Y obfuscated gt 2] g2l 0
. original O 0 0 0

zOmbie-6.b

obfuscated g2l 02 Bl N
original O 0 0 0

fOsfOr0 ‘ ‘ ‘
obfuscated o2l 02 g2 -
Hare original O 0 0 0
obfuscated g2l 02 Bl N

Obfuscations considered: Y1 = nop-insertion (a form of dead-code insertion)
[21 = code transposition

Table 1: Results of testing various virus scanners on obhfescviruses.

5 Architecture

This section gives an overview of the architecturé&SafFE(Figure 5). Subsequent sections provide detailed descrip-
tions of the major components of SAFE.

Static Analyzer for Executables (SAFE)

Pattern Pf".“?f“ Intermediate Form
Definitions Definition for the Patterns
Loader
Annotator Annotated
CFG
Binary o | Executable CFG for the
Executable Loader Executable

Y
Malicious
Code > Detector

Automaton /\\
Yes (with malicious code
trace found in program) No

Figure 5: Architecture of the static analyzer for execugal{SAFE).

To detect malicious patterns in executables, we build atratigepresentation of the malicious code (here a virus).
The abstract representation is the “generalization” ofrttadicious code, e.g., it incorporates obfuscation transfo
mations, such as superfluous changes in control flow andteegeassignments. Similarly, one must construct an
abstract representation of the executable in which we wgirggtto find a malicious pattern. Once the generalization of
the malicious code and the abstract representation of #xsuéable are created, we can then detect the malicious code
in the executable. We now describe each component of SAFE.

Generalizing the malicious code: Building the malicious cde automaton

The malicious code is generalized into an automaton withterpreted symbols. Uninterpreted symbols (Section 6.2)
provide a generic way of representing data dependenciegbetvariables without specifically referring to the sterag
location of each variable.

Pattern-definition loader
This component takes a library abstraction patternand creates an internal representation. These abstraetton
terns are used as alphabet symbols by the malicious codmatao.



Executable Loader:

—- IDA Pro

Figure 6: Implementation of executable loader module.

CodeSurfer

The executable loader

This component transforms the executable into an inteemkisentation, here the collection of control flow graphs
(CFGs), one for each program procedure. The executabledd&ijure 6) uses two off-the-shelf componehh

Pro andCodeSurferIDA Pro (by DataRescue [15]) is a commercial interactiveadsembleiCodeSurfeby Gram-
maTech, Inc. [21]) is a program-understanding tool thatquers a variety of static analyses. CodeSurfer provides an
API for access to various structures, such as the CFGs arwdilgraph, and to results of a variety of static analyses,
such as points-to analysis. In collaboration with GramnechTeve have developed a connector that transforms IDA
Pro internal structures into an intermediate form that Gad&er can parse.

The annotator

This component inputs a CFG from the executable and the sdtstfaction patterns and produces an annotated CFG,
the abstract representation of a program procedure. Thetaed CFG includes information that indicates where
a specific abstraction pattern was found in the executabltee ahnotator runs for each procedure in the program,
transforming each CFG. Section 6 describes the annotattmtail.

The detector

This component computes whether the malicious code (repted by the malicious code automaton) appears in the
abstract representation of the executable (created bynthetator). This component uses an algorithm based upon
language containment and unification. Details can be fonr&kction 7.

Throughout the rest of the paper, the malicious code fragsteawn in Figure 7 is used as a running example. This
code fragment was extracted from the Chernobyl virus varsid.

To obtain the obfuscated code fragment depicted (Figurev8)applied the following obfuscation transformations:
dead-code insertion, code transposition, and registesiggament. Incidentally, the three commercial antivirof-s
ware (Norton, McAfee, and Command) detected the origindedoagment shown. However, the obfuscated version
was not detected by any of the three commercial antivirusvsoé.

6 Program Annotator

This section describes the program annotator in detail la@d&ta structures and static analysis concepts used in the
detection algorithm. The program annotator inputs the CF@G® executable and a set of abstraction patterns and
outputs an annotated CFG. The annotated CFG associatesatithnode: in the CFG a set of patterns that match
the program at the point corresponding to the ned&he precise syntax for an abstraction pattern and the gesan

of matching are provided later in the section.

Figure 9 shows the CFG and a simple annotated CFG corresgptadihe obfuscated code from Figure 8. Note that
one node in the annotated CFG can correspond to several imdtiesoriginal CFG. For example, the nodes annotated
with “Irrelevantinstr” corresponds to one or marep instructions.

The annotations that appear in Figure 9 seem intuitive, dum@lating them within a static-analysis framework re-
quires formal definitions. We enhance the SAFE framework witype system for x86 based on the typestate system
described in [45]. However, other type systems designedissembly languages, such Bgped Assembly Lan-
guag€g31, 32], could be used in the SAFE framework. Definitiondtgras, and the matching procedure are described
in Sections 6.1, 6.2 and 6.3 respectively.



Obfuscated code

WV/CTF:
nov eax, drl
jmp Locl
Loc2:
nmv edi, [eax]
Original code LONCTF:
W/CTF: pop ecx
nov eax, drl jecxz  SFMM
nov ebx, [eax+10h] nop
nmv edi, [eax] nmov esi, ecx
LOW/CTF: nop
pop ecx nop
jecxz  SFMM nmov eax, 0d601h
nmv esi, ecx jmp Loc3
nmv eax, 0d601h Loc1:
pop edx nmv ebx, [eax+10h]
pop ecx jmp Loc2
cal | edi Loc3:
jmp LOW/CTF pop edx
SFVM pop ecx
pop ebx nop
pop eax call edi
stc jmp LONCTF
pushf SFM\Vt
pop ebx
pop eax
. .. push eax
Figure 7: Original code fragment from Chernobyl pop eax
virus version 1.4. ste
pushf

Figure 8: Obfuscated version based upon code in Fig-
ure 7.

6.1 Basic Definitions

This section provides the formal definitions used in the oé#te paper.

Program Points

An instruction? is a function application] : 7, x --- x 7, — 7. While the type system does not preclude higher-
order functions or function composition, it is importantriote that most assembly languages (including x86) do
not support these concepts. pogram P is a sequence of instruction$,, ..., In). During program execution,
the instructions are processed in the sequential orderappgar in the program, with the exception of control-flow
instructions that can change the sequential executiorr.ofde index of the instruction in the program sequence is

called aprogram point(or program counte), denoted by the functiopc : {I;,...,Iny} — [1,..., N], and defined as

pe(l)) %/ j V1< j < N.The setof all program points for prografis ProgramPoints(P) < {1,... N}.

The pc function provides a total ordering over the set of prograstrirctions.

Control Flow Graph

A basic blockB is a sequence of instructionig, . .., I,,) that contains at most one control-flow instruction, which
must appear at the end. Thus, the execution within a basik iBdy definition sequential. L&t be the set of basic
blocks for a progran®, and letE C V x V x {T, F'} be the set of control flow transitions between basic blockshE
edge is marked with eithéf or F' corresponding to the conditiorr{ze or false) on which that edge is followed.
Unconditional jumps have outgoing edges always marked WitiThe directed grapltv FG(P) = (V, E) is called
thecontrol flow graph

Predicates

Predicates are the mechanism by which we incorporate sesularious static analyses such as live range and points-
to analysis. These predicates can be used in the definitiabsifaction patterns. Table 2 lists predicates that are
currently available in our system. For example, code beatviae program point; andp, can be verified as dead-
code (Section 4.1.1) by checking that for every variahléhat is live in the program rande; , p»], its value at point

p2 is the same as its value at pojt The change imn’s value between two program poinis andp, is denoted by
Delta(m, p1, p2) and can be implemented using polyhedral analysis [14].
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Assign( eax, drl)

nmov eax, drl

v
Assign( ebx, [eax+10h] )

nov edi, [eax+10h]

nmov eax, drl

nov ebx, [eax+10h]

Assign( edi, [eax] )

Loop: pop ecx

v
Loop: Pop( ecx )

Loop: pop ecx

If( ecx =
Irrelevantinstr Pop( ebx )
Assign( esi, ecx) Fop( eax )
nov esi, ecx pop eax
’ nmov esi, ecx pop eax

aan
Lo

T .

Assign( eax 0d601h ) Asslgn( Carry, 1)

| nov eax, 0d601lh | stc

nov eax, 0d601h ‘ stc

Push( flags )

pushf

B
i

Pop( edx )

pop edx

Pop( ecx)

pop ecx

4

Irrelevantinstr

1

IndirectCall( edi )

call edi

it

GoTo( Loop)

jmp Loop

Figure 9: Control flow graph of obfuscated code fragment,amtbtations.
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Dominators(B) the set of basic blocks that dominate the basic blBck
PostDominators(B)  the set of basic blocks that are dominated by the basic bbck

Pred(B) the set of basic blocks that immediately precétie
Swucc(B) the set of basic blocks that immediately folldw
First(B) the first instruction of the basic blodR
Last(B) the last instruction of the basic blodk
. Ug Last(B') if I = First(B;)
P T €Pred(By)
TBUlOUS( ) { I/ if BI _ ( . Il’ 17 )
Ug First(B') if I = Last(Br)
Next(I €Succ(By)
ewt(l) {1' if Br = (..., 1, I, ...)
Kills(p,a) true if the instruction at program pointkills variablea
Uses(p,a) trueif the instruction at program pointuses variable
Alias(p,x,y) trueif variable z is an alias fory at program poinp

LiveRangeStart(p,a) the set of program points that start tie live range that includes
LiveRange End(p, a) the set of program points that end tfie live range that includes

Delta(p, m,n) the difference between integer variablesandn at program poinp
Delta(m,p1,p2) the change inn’s value between program points andp.
PointsTo(p, z,a) trueif variable z points to location of: at program poinp

Table 2: Examples of static analysis predicates.

Explanation of the static analysis predicates shown inéliakdre standard and can be found in a compiler textbook
(such as [33]).

Instructions and Data Types

The type constructors build upon simple integer typese(tisielow as thgroundclass of types), and allow for array
types (with two variations: the pointer-to-start-of-grtgpe and the pointer-to-middle-of-array type), struesiand
unions, pointers, and functions. Two special typgs) andT (n) complete the type system lattice.(n) and T (n)
represent types that are storedmotits, with L(n) being the least specific (“any”) type anidn) being the most
specific type. Table 3 describes the constructors allowedirtype system.

T 1 ground Ground types
| 7[n] Pointer to the base of an array of typeand of sizen
| 7(n] Pointer into the middle of an array of typeand of sizen
| Tptr Pointer tor
| s{pr, ..o, pxt} Structure (product of types of;)
| w{pr, ., i} Union
| 71 x---x7m—7 Function
| T(n) Top type ofn bits
| L(n) Bottom type of bits (type “any” of n bits)

woon (L T,i) Member labeled of typer at offseti

ground 1 int(g:siwv)|uint(g: siv)]|...

Table 3: A simple type system.

The typeu( I, 7, i) represents the type of a field member of a structure. The feeddahtyper (independent of the
types of all other fields in the same structure), an offghat uniquely determines the location of the field within the
structure, and a labélthat identifies the field within the structure (in some cabkéslabel might be undefined).

Physical subtyping takes into account the layout of valnesémory [6, 45]. If a type- is aphysical subtypef 7’
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Code Type

call Oh

pop ebx ebx : 1(32

| ea ecx, [ebx + 42h] ecx: 1(32,ebx:ptr L(32
push ecx ecx: 1(32

push eax eax : 1(32

push eax eax : 1(32

sidt [esp - 02h]

pop ebx eax: 1(32

add ebx, 1Ch ebx :int(0:1:3)

cli

nmov ebp, [ebx] ebp: 1(32,ebx:ptr L(32

Figure 10: Inferred types from Chernobyl/CIH virus code.

(denoted it byr < 7'), then the memory layout of a value of typkis a prefix of the memory layout of a value of type
7. We will not describe the rules of physical subtyping herevasefer the reader to Xu'’s thesis [45] for a detailed
account of the typestate system (including subtyping jules

The typei nt ( g: s: v) represents a signed integer, and it covers a wide varietglagg within storage locations. It
is parametrized using three parameters as folloywepresents the number of highest bits that are ignorésithe
number of middle bits that represent the sign, aiglthe number of lowest bits that represent the value. Thais/he

i nt(g:s:v) uses atotal of + s + v bits.

dytsto - Asyort dgsy .. dosr dy ... dy
- - N——

ignored sign value

The typeui nt (g: s: v) represents an unsigned integer, and it is just a variatiomof ¢: s: v) , with the middles
sign bits always set to zero.

The notation nt ( g: s: v) allows for the separation of the data and storage locatjp® thn most assembly languages,
it is possible to use a storage location larger than thatiredby the data type stored in it. For example, if a byte is
stored right-aligned in a (32-bit) word, its associatedetygi nt (24: 1: 7) . This means that an instruction such as
xor on least significant byte within 32-bit wowdll preserve the leftmost4 bits of the 32-bit word, even though the
instruction addresses the memory on 32-bit word boundary.

This separation between data and storage location raiseisshe of alignment information, i.e., most computer

systems require or prefer data to be at a memory addressdlignthe data size. For example, 32-bit integers

should be aligned on 4-byte boundaries, with the drawbaakabcessing an unaligned 32-bit integer leads to either
a slowdown (due to several aligned memory accesses) or aptxae that requires handling in software. Presently,

we do not use alignment information as it does not seem taigeavsignificant covert way of changing the program

flow.

Figure 10 shows the types for operands in a section of coae fn@ Chernobyl/CIH virus. Table 4 illustrates the
type system for Intel 1A-32 architecture. There are othe3Adata types that are not covered in Table 4, including
bit strings, byte strings, 64- and 128-bit packed SIMD tyesl BCD and packed BCD formats. The 1A-32 logical
address is a combination of a 16-bit segment selector anebét 32gment offset, thus its type is the cross product of
a 16-bit unsigned integer and a 32-bit pointer.

6.2 Abstraction Patterns

An abstraction patteri is a3-tuple (V, O, C), whereV is a list of typed variableg) is a sequence of instructions,
andC' is a boolean expression combining one or more static asapysidicates over program points. Formally, a
patternl’ = (V, O, C) is a3-tuple defined as follows:

V. = {zi:7,...,%6 7k }
O = (I(vi, ...;om) |71 X+ XTsy = T)
C = boolean expression involving static

analysis predicates and logical operators
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IA-32 Datatype

Type Expression

Unsigned Integer Types

byte unsigned int ui nt (0:0:8
word unsi gned int uint (0:0:16
doubl eword unsi gned int ui nt (0:0:33
quadwor d unsi gned i nt ui nt (0:0:64
doubl e quadword unsi gned int uint (0:0:128
Signed Integer Types
byte signed int int(0:1:9
word signed int int(0:1:15
doubl eword signed int int(0:1:3)
quadwor d si gned int int(0:1:63
doubl e quadword signed int int(0:1:127%
Floating-Point Types
single precision float float(0:1:30)
doubl e precision float float(0:1:63
doubl e extended precision float float(0:1:79
Pointers to Memory Locations
near poi nter 1(32
far pointer (logical address) uint (0:0:16 x uint(0:0:33 — 1(48
Registers
eax, ebx, ecx, edx 1(32
esi, edi, ebp, esp 1(32

eip int(0:1:3)

cs, ds, ss, es, fs, gs 116
ax, bx, cx, dx 116
al, bl, cl, di 1(8
ah, bh, ch, dh 1(8

Table 4: 1A-32 datatypes and their corresponding exprassithe type system from Table 3.

An instruction from the sequenc has a number of argumer(ts);>o, where each argument is either a literal value
or a free variabler;. We write'(z, : 7,..., 2z : 7;) to denote the patterhi = (V, 0, C) with free variables
x1,...,x. An example of a pattern is shown below.

(X :int(0:1:31)) =
( {X:int(0:1:31)},
( p1: “pop X",
p2: “add X,03AFh” ),
p1 € LiveRangeStart(p2, X) )

This pattern represents two instructions that pop a registff the stack and then add a constant value tOXxQ3AF).
Notice the use of uninterpreted symb¥®lin the pattern. Use of the uninterpreted symbols in a pat#ows it to
match multiple sequences of instructions, e.g., the pettgiown above matches any instantiation of the patternevher
X is assigned a specific register. The type(0 : 1 : 31) of X represents an integer wifi bits of storage and one
sign bit.

We define abinding B as a set of pairpsariablev, valuez]. Formally, a bindings is defined ag [z,v] |z € V, z :
m,v:7', 7 <7} Ifapair[z,v] occursin a binding, then we write3(x) = ». Two bindingsB; andB, are said

to becompatiblef they do not bind the same variable to different values:

CompatibléB; , B) “<

Ve eV ([z,y] €B1 A [z,y2] € By)
= (y1 =y2)
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Theunion of two compatible binding$;, andB, includes all the pairs from both bindings. For incompathitedings,
the union operation returns an empty binding.

{[z,ve] : [z,0:] € B1 V[z,v.] € B2 }
B UB, % if Compatible(B, Bs)
0 if = Compatible(B1, B2)

When matching an abstraction pattern against a sequenestnidtions, we use unification to bind the free variables
of I to actual values. The function

UTNf’l/ ( < -,Opi,(-Ti,l,- --;-’I;i,n,-);- ">1Si§m7 F)

returns a “most general” bindingif the instruction sequencep: (1.1, -, 1,01 )5 -« s Pm(Tm 15 - - s Tmon,, ) CAN
be unified with the sequence of instructiaiisspecified in the patterh. If the two instruction sequences cannot be
unified, Unify returnsfalse Definitions and algorithms related to unification are staddnd can be found in [19].

6.3 Annotator Operation

The annotator associates a set of matching patterns with rezde in the CFG. The annotated CFG of a program
procedureP with respect to a set of patterdsis denoted byPs. Assume that a node in the CFG corresponds
to the program poinp and the instruction at is I,. The annotator attempts to match the (possibly interprocey
instruction sequencg(n) = (..., Previous®(I,), Previous(I,), I,,) with the patternsin the s&t = {TI'y,...,T,,}.

The CFG node: is then labeled with the list of pairs of patterns and bindititat satisfy the following condition:

Annotation(n) = { [I',B] :T € {T'1,...,T'n} A
B = Unify(S(n),T) }

If Unify(S(n),T) returnsfalse (because unification is not possible), then the nede not annotated withl", B].
Note that a patteriv might appear several times (albeit with different bindingsdnnotation(n). However, the pair
[T, B] is unique in the annotation set of a given node.

7 Detector

The detector takes as its inputs an annotated CFG for an @kgeprogram procedure and a malicious code au-
tomaton. If the malicious pattern described by the malisioode automaton is also found in the annotated CFG, the
detector returns the sequence of instructions exhibitiegoattern. The detector retumns if the malicious pattern
cannot be found in the annotated CFG.

7.1 The Malicious-Code Automaton

Intuitively, the malicious code automaton is a generaiiabf the vanilla virus, i.e., the malicious code automa-
ton also represents obfuscated strains of the virus. Fornaainalicious code automataofor MCA) A is a6-tuple
(V,%,S,0,50, F), where

oV ={vy:1,...,v0; : 7 } IS aset of typed variables

e ¥ = {I'y,...,[',} is afinite alphabetof patterns parametrized by variables frdm for 1 < i < n, P, =
(Vi, Oy, C;) whereV; C V,

¢ S is afinite set oktates

e §: S x ¥ — 29is atransition function

e Sy C S is anon-empty set ahitial states

e I' C S is a non-empty set dinal states

An MCA is a generalization of an ordinary finite-state autéonan which the alphabets are a finite set of patterns
defined over a set of typed variables. Given a bindirfgr the variabled” = {v1, ..., v;}, the finite-state automaton
obtained by substituting§(v;) for v; forall 1 < i < kin A is denoted by3(.A). Notice that3(.A) is a simple finite-
state automaton. We explain this using an example. ConisidélCA A shown in Figure 11 with” = {A, B, C, D}.

3We use one-way matching which is simpler than full unificatioNote that the instruction sequence does not contain arigbles. We
instantiate variables in the pattern so that they matchdahesponding terms in the instruction sequence.

15



The automata obtained fromh corresponding to the bindind$, andB, are shown in Figure 11. The uninterpreted
variables in the MCA were introduced to handle obfuscatiangformations based on register reassignment. The ma-
licious code automaton corresponding to the code fragntemwtis in Figure 7 (from the Chernobyl virus) is depicted
in Figure 12.

nov esi, ecx nov esi, eax
nov eax, 0d601h nov ebx, 0d601h
pop edx pop ecx
pop ecx pop eax
By = {[A esi], Bs = { [A esi],

[B, ecx], [B, eax],

[C, eax], [C, ebx],

[D, edx] } [D,ecx] }

Figure 11: Malicious code automaton for a Chernobyl virudecragment, and instantiations with different register
assignments, shown with their respective bindings.

7.2 Detector Operation

The detector takes as its inputs the annotated CE®f a program procedur® and a malicious code automaton
MCA A = (V,X, 5,6, Sy, F'). Note that the set of patterasis used both to construct the annotated CFG and as the
alphabet of the malicious code automaton. Intuitively,dbtector determines whether there exists a maliciousrpatte
that occurs ind and Ps,. We formalize this intuitive notion. The annotated CIs is a finite-state automaton where
nodes are states, edges represent transitions, the naodspmrding to the entry point is the initial state, and every
node is a final state. Our detector determines whether thenfiolg language is empty:

L(Ps)N ( U L(B(A)))

BeBan

In the expression given abovE(Ps,) is the language corresponding to the annotated CFGsandis the set of all
bindings to the variables in the st In other words, the detector determines whether theraseaibindings such
that the intersection of the languag@s andB(.A) is non-empty.

Our detection algorithm is very similar to the classic aition for determining whether the intersection of two regula
languages is non-empty [22]. However, due to the presenc@radbles, we must perform unification during the
algorithm. Our algorithm (Figure 13) combines the classioathm for computing the intersection of two regular
languages with unification. We have implemented the allgorias a data-flow analysis.

e For each node of the annotated CF®, we associate pre and post ligt&™© andLP°* respectively. Each element
of a listis a paif]s, B], wheres is the state of the MCA4 and5 is the binding of variables. Intuitively, &, B] € L2"e,
then it is possible ford with the binding3 (i.e. for B(.A)) to be in states just before node.
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Junp()

I ndi rect Cal | (E)

D>

I'rrel evant Junp()

Figure 12: Malicious code automaton corresponding to coafgnient from Figure 7.

e Initial condition: Initially, both lists associated with all nodes except tkertsnoden, are empty. The pre list
associated with the start node is the list of all p&ird)], wheres is an initial state of the MCA4, and the post list
associated with the start node is empty.

e The do-until loop: The do-until loop updates the pre and post lists of all the nodes. At theoétige loop, the
worklist WS contains the set of nodes whose pre or post information hasgeld. The loop executes until the pre
and post information associated with the nodes does nogehamd a fixed point is reached. The join operation that
computes ! takes the list of state-binding pairs from all of th?"“ sets for program points precedingnd copies
them toL!"® only if there are no repeated states. In case of repeatezbstae conflicting pairs are merged into a

single pair only if the bindings are compatible. If the bimgls are incompatible, both pairs are thrown out.

e Diagnostic feedback:Suppose our algorithm returns a non-empty set, meaningieie pattern is common to the
annotated CF@x; and MCA A. In this case, we return the sequence of instructions inxbkewtable corresponding
to the malicious pattern. This is achieved by keeping antamah@il structure with the algorithm. Every time the post
list for a noden is updated by taking a transition id (see the statemet! in Figure 13), we store the predecessor
of the added state, i.e., (s, T), B, U B] is added tol?°5*, then we add an edge frosto 6(s,T') (along with the
binding B, U B) in the associated structure. Suppose we detect/tfrdt contains a statés, B,], wheres is a final
state of the MCAA. Then we traceback the associated structure framitil we reach an initial state ol (storing the
instructions occurring along the way).
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Input: A list of patterns®X = {P:,..., P.}, a malicious code automato# = (V, %, S, 4, So, F'),
and an annotated CFB;, =< N, E >

Output: true if the program is likely infectedfalse otherwise

MALICIOUSCODECHECKING(X, A, Px)

1) Ly« {[s,0] | s € So }, whereny € N is the entry node oy

(2) foreachn € N do L%"¢ < ()

3) foreachn € N do LE*" «

4) WS « 0

5) do

(6) WSold — WS

@ WS « 0

(8) foreachn € N /I update pre information
© if Ly #lJmepmuwudn>L%”tt

(10) Lﬁ"e = UmEPrevious(n) LZTJ;S

(11) WS «+— WS U {n}

(12) foreachn € N [/l update post information
(13) NewLPst « ()

(14) foreach (s, B,] € L7

(15) foreach [T, B] € Annotation(n) /[ follow a transition
(16) A Compatible(Bs, B)

a7) add[d(s,T), Bs UB|to NewL2s

(18) if LPost £ New PO

(19) LPost « NewLPos!

(20) WS «+— WS U {n}

(1)  untl WS =0
(22) retun 3ne N .3[s,Bs] €L . s€F

Figure 13: Algorithm to check a program model against a rnaligcode specification.

8 Experimental Data

The three major goals of our experiments were to measurexéigon time of our tool and find the false positive
and negative rates. Our testing proceeded as follows:

e First, we constructed ten obfuscated versions of the fauses. Let; ;. (for 1 < i < 4 andl < k£ < 10) denote
the k-th version of the-th virus. The obfuscated versions were created by varyiegbfuscation parameters, e.g.,
number of nops and inserted jumps. For kb virus,V; 1 denoted the “vanilla” or the unobfuscated version of the
virus.

e Let My, M>, M3 andM, be the malicious code automata corresponding to the fouses.

Testing environment: The testing environment consisted of a Microsoft Window8@tachine. The hardware con-
figuration included an AMD Athlon 1 GHz processor and 1 GB of\RANe used CodeSurfer version 1.5 patchlevel
0 and IDA Pro version 4.1.7.600.

Testing on malicious codeWe will describe the testing with respect to the first virueeTesting for the other viruses
is analogous. First, we ran SAFE on theversions of the first viru§; 1, ..., V4 1o with malicious code automaton
M, . This experiment gave us the false negative rate, i.e., dttenm corresponding td/; should be detected in all
versions of the virus.

Next, we executed SAFE on the versions of the viruggswith the malicious code automatai; (wherei # j).
This helped us find the false positive rate of SAFE.

We found that SAFE's false positive and negative rate vier@/e also measured the execution times for each run.
Since IDA Pro and CodeSurfer were not implemented by us, wedi measure the execution times for these com-
ponents. We report the average and standard deviation ek#wition times in Tables 5 and 6.

Testing on benign code:We considered a suite of benign programs (see Section 8.defmriptions). For each
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benign program, we executed SAFE on the malicious code attomtorresponding to the four viruses. Our detector
reported “negative” in each case, i.e., the false positite is0. The average and variance of the execution times are
reported in Table 7. As can be seen from the results, forioerteses the execution times are unacceptably large. We
will address performance enhancements to SAFE in the future

Annotator Detector Annotator Detector
avg. (std.dev.) avg. (std. dev.) avg. (std. dev.) avg. (std. dev.)
Chernobyl | 1.444s (0.497s) 0.535s (0.0435s) zOmbie-6.b| 3.400s (1.428s) 1.400s (0.420 s)
z0mbie-6.b 4.600s (2.059s) 1.149s (0.041s) fOsfOr0 4900s (1.136s) 0.840s (0.082s)
fOsfOr0 4900s (2.844s) 0.923s (0.1925s) Hare 1.000s (0.000s) 0.220s (0.0195s)
Hare 9.142s (1.551s) 1.604s (0.104s)

Table 6: SAFE performance when checking obfus-
Table 5: SAFE performance when checking obfus-cated viruses for false positives against the Cher-
cated viruses for false negatives. nobyl/CIH virus.

8.1 Descriptions of the Benign Executables

tiffdither.exeis a command line utility in theygwintoolkit version 1.3.70, a UNIX environment developed by Red
Hat, for Windows.

winmine.exés the Microsoft Windows 2000 Minesweeper game, versior?3.86.1.

spyxx.exas a Microsoft Visual Studio 6.0 Spy++ utility, that allowiset querying of properties and monitoring of
messages of Windows applications. The executable we testednarked as version 6.0.8168.0.
QuickTimePlayer.exis part of the Apple QuickTime media player, version 5.062.1

Executable . text Procedure Annotator Detector
size size count avg. (std. dev.)  avg. (std. dev.)
tiffdither.exe 9,216 B 6,656 B 29 6.333s (0.471s) 1.030s (0.0435s)
winmine.exe 96,528 B 12,120B 85 15.667s (1.700s) 2.283s (0.1315s)
Spyxx.exe 499,768 B 307,200 B 1,765 | 193.667s (11.557s) 30.917s (6.6255s)

QuickTimePlayer.exe 1,043,968 B 499,712 B 4,767 | 799.333s (5.437s) 160.580s (4.4555s)

Table 7: SAFE performance in seconds when checking cleagrgmts against the Chernobyl/CIH virus.

9 Conclusion and Future Work

We presented a unique view of malicious code detection adusadtion-deobfuscation game. We used this view-
point to explore obfuscation attacks on commercial virnsers, and found that three popular virus scanners were
susceptible to these attacks. We presented a static asfibysiework for detecting malicious code patterns in execut
bles. Based upon our framework, we have implemented SARR&tia analyzer for executables that detects malicious
patterns in executables and is resilient to common obfistansformations.

For future work, we will investigate the use of theorem prev@uring the construction of the annotated CFG. For
instance, SLAM [2] uses the theorem prover Simplify [16] fsedicate abstraction of C programs. Our detection
algorithm is context insensitive and does not track theérzattontext of the executable. We will investigate the use of
the PDS formalism, which would make our algorithm contexisi#ttve. However, the existing PDS formalism does
not allow uninterpreted variables, so it will have to be exled to be used in our context.
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